On Polynomial Curves in the Affine Plane
نویسندگان
چکیده
A curve that can be parametrized by polynomials is called a polynomial curve. It is well-known that a polynomial curve has only one place at infinity. Sathaye indicated the Abhyankar’s question for curves with one place at infinity. Let C be a curve with one place at infinity. Is there a polynomial curve associated with the semigroup generated by pole orders of C at infinity? We found a counter example for the Abhyankar’s question using Gröbner basis computation. In this paper, we give the details.
منابع مشابه
Real Plane Algebraic Curves
We study real algebraic plane curves, at an elementary level, using as little algebra as possible. Both cases, affine and projective, are addressed. A real curve is infinite, finite or empty according to the fact that a minimal polynomial for the curve is indefinite, semi–definite nondefinite or definite. We present a discussion about isolated points. By means of the operator, these points can ...
متن کاملOne-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes
We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...
متن کاملEfficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملCounting Nodes on Rational Plane Curves
In this paper, we consider polynomial parametrized curves in the affine plane k over an algebraically closed field k. Such curves are given by κ : k → k : t 7→ (x(t), y(t)), and may or may not contain singular points. The problem of how many singular points there are is of specific importance to the theory of polynomial knots, as it gives a bound on the degrees necessary to achieve a parametriz...
متن کاملAcyclic curves and group actions on affine toric surfaces
We show that every irreducible, simply connected curve on a toric affine surface X over C is an orbit closure of a Gm-action on X . It follows that up to the action of the automorphism group Aut(X) there are only finitely many non-equivalent embeddings of the affine line A in X . A similar description is given for simply connected curves in the quotients of the affine plane by small finite line...
متن کامل